Application of Artificial Neural Network in seismic reservoir characterization: a case study from Offshore Nile Delta

نویسندگان

چکیده

Abstract The Prediction of the reservoir characteristics from seismic amplitude data is a main challenge. Especially in Nile Delta Basin, where subsurface geology complex and reservoirs are highly heterogeneous. Modern characterization methodologies spanning around attributes analysis, deterministic stochastic inversion methods, Amplitude Variation with Offset (AVO) interpretations, stack rotations. These proved good outcomes detecting gas sand quantifying properties. However, when pre-stack not available, most AVO-related methods cannot be implemented. Moreover, there no direct link between properties, such as hydrocarbon saturation, many assumptions imbedded results questionable. Application Artificial Neural Network (ANN) algorithms to predict new emerging trend. advantage ANN algorithm over other ability build nonlinear relationships petrophysical logs data. Hence, it can used various properties 3D space reasonable amount accuracy. We implemented method on Sequoia field, Offshore Delta, chosen was Probabilistic (PNN). One well kept apart analysis later blind quality control test results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Groundwater level simulation using artificial neural network: a case study from Aghili plain, urban area of Gotvand, south-west Iran

In this paper, the Artificial Neural Network (ANN) approach is applied for forecasting groundwater level fluctuation in Aghili plain,southwest Iran. An optimal design is completed for the two hidden layers with four different algorithms: gradient descent withmomentum (GDM), levenberg marquardt (LM), resilient back propagation (RP), and scaled conjugate gradient (SCG). Rain,evaporation, relative...

متن کامل

An application of artificial neural network to maintenance management

This study shows the usefulness of Artificial Neural Network (ANN) in maintenance planning and man-agement. An ANN model based on the multi-layer perceptron having three hidden layers and four processing elements per layer was built to predict the expected downtime resulting from a breakdown or a maintenance activity. The model achieved an accuracy of over 70% in predicting the expected downtime.

متن کامل

Groundwater quality assessment using artificial neural network: A case study of Bahabad plain, Yazd, Iran

Groundwater quality management is the most important issue in many arid and semi-arid countries, including Iran.Artificial neural network (ANN) has an extensive range of applications in water resources management. In this study,artificial neural network was developed using MATLAB R2013 software package, and Cl, EC, SO4 and NO3 qualitativeparameters were estimated and compared with the measured ...

متن کامل

A Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh) Reservoir as an Iranian Gas Field, Persian Gulf Basin

Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Earth Science Informatics

سال: 2021

ISSN: ['1865-0473', '1865-0481']

DOI: https://doi.org/10.1007/s12145-021-00573-x